(m, $1 \mathrm{H}, 5 \beta$), 3.35 (m, $1 \mathrm{H}, 5 \alpha$), 3.52 (dd, $1 \mathrm{H}, 3 \beta$), 4.02 (d, 1 H , 3α), 4.47 (br s, $1 \mathrm{H}, 8$), 5.51 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 7$), 4.91 and 4.87 (AB q , $2 \mathrm{H}, 9$), 5.94 (br s, $1 \mathrm{H}, 2$), 7.36, $7.46,7.89$ (aromatic).

C-9 Mono(phenylacetate) of Retronecine (22). Compound 22 was prepared as described above for 23 and the crude reaction mixture was chromatographed on activity III alumina. The major product, $\mathrm{C}-9$ monoester 22, was eluted in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (97:3). For 22: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.85(\mathrm{~m}, 2 \mathrm{H}, 6 \alpha$ and $6 \beta), 2.66(\mathrm{~m}$, $1 \mathrm{H}, 5 \beta$), 3.16 (dd, $1 \mathrm{H}, 3 \beta$), 3.32 (m, $1 \mathrm{H}, 5 \alpha$), 3.83 (d, $1 \mathrm{H}, 3 \alpha$), 4.06 (br s, $2 \mathrm{H}, 7$ and 8), 4.69 (br s, $2 \mathrm{H}, 9$), 5.68 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 2$), 7.26 (m, aromatic), 3.62 ($\mathrm{s}, 2 \mathrm{H}, 2^{\prime}$); EIMS, m / e (relative intensity) 53 (13), 55 (20), 57 (12), 60 (14), 66 (16), 67 (12), 68 (21), 69 (11), 70 (17), 80 (17), 81 (27), 82 (11), 92 (16), 94 (100), 95 (48), 96 (12), 136 (10), 137 (13), 138 (23), 139 (22); CIMS, m / e (relative intensity) $274(\mathrm{M}+1,33), 69(100)$; exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} 273.1366$, found 273.1379. Anal. ($\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}{ }^{1} /{ }_{4} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}-7 \mathrm{H}$. For C-7 monoester 25: $\operatorname{mp~} 83-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{~m}, 2 \mathrm{H}$, 6α and 6β), $2.55(\mathrm{q}, 1 \mathrm{H}, 5 \beta), 3.14(\mathrm{dm}, 1 \mathrm{H}, 5 \beta), 3.28(\mathrm{~m}, 1 \mathrm{H}$, 3β), 3.83 (d, $1 \mathrm{H}, 3 \beta$), $3.93(\mathrm{~s}, 2 \mathrm{H}, 9), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 8), 5.27(\mathrm{q}$, $1 \mathrm{H}, 7$), $5.38(\mathrm{~d}, 1 \mathrm{H}, 2), 3.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.2-7.3$ (aromatic); EIMS, m / e (relative intensity) 68 (12), 80 (95), 81 (14), 91 (42), 93 (12), 94 (34), 106 (61), 111 (100), 120 (10), 123 (34), 124 (26), 136 (25), 137 (47), 255 (23), 273 (7); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ 273.1366, found 273.1326 .

C-9 Ester of Retronecine and Isovaleric Acid (23). Compound 23 was prepared as described above and the crude product was chromatographed on activity III alumina, and 25 , the major product, was eluted in chloroform: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$, run at 60 MHz , consistent with that of other C-9 monoesters run at 300 MHz mentioned above; EIMS, m / e (relative intensity) 41 (16), $80(18), 93$ (100), 94 (35), 135 (15), 137 (35), 138 (37), 155 (21), 239 (1); exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3} 239.1522$, found 239.1508.

Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot{ }^{1} /{ }_{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.
Acknowledgment. This investigation was supported by the National Cancer Institute, National Institutes of Health (Grant ROI CA31490). We thank James McManus for development of the procedure for preparation of the N-oxides.

Registry No. 7, 480-82-0; 7 (N-oxide), 41708-76-3; 7 (isopropylidene), $95363-32-9 ; 14,10285-06-0 ; 14$ (isopropylidene), 95462-10-5; 14 (N-oxide), $95462-14-9 ; 15,10285-07-1 ; 15$ (isopropylidene), 95462-11-6; 15 (N-oxide), $95462-15-0 ; 16,95462-13-8$; 16 (isopropylidene), 95462-12-7; 16 (N-oxide), 95462-16-1; 19, 95363-35-2; 19 (isopropylidene), 95363-33-0; 19 (isopropylidene N-oxide), 95363-34-1; 19 (N-oxide), 95363-36-3; 20, 95462-18-3; 20 (isopropylidene), $95462-17-2 ; 20$ (isopropylidene N-oxide), 95463-25-5; 20 (N-oxide), 95462-19-4; 21, 95363-37-4; 21 (N-oxide), 6870-33-3; 22, 95363-38-5; 23, 95363-39-6; trans α-isopropylcrotonic acid, 94773-28-1; tiglic acid, 80-59-1; (土)-threo-2,3-dihydroxy-2methylbutyric acid, 40634-99-9; (\pm)-threo-2,3-dihydroxy-2methylbutyric acid (isopropylene), $95363-40-9$; (\pm)-viridifloric acid, 17132-45-5; (+)-viridifloric acid•(+)-phenylethylamine, 95363-29-4; $(-)$-viridifloric acid. $(-)$-phenylethylamine, 95363-30-7; (+)-trachelanthic acid•(-)- α-phenylethylamine, 23944-49-2; (-)-trachelanthic acid•(+)- α-phenylethylamine, 95363-31-8; (-)-trachelanthic acid (isopropylidene), 95462-07-0; (+)-trachelanthic acid (isopropylidene), 95462-08-1; (+)-viridifloric acid (isopropylidene), 81816-10-6; (- -viridifloric acid (isopropylidene), 95462-09-2; (\pm)-trachelanthic acid, 23944-47-0; (+)-viridifloric acid, 17233-93-1; (-)-viridifloric acid, 17132-48-8; (+)-trachelanthic acid, 23944-48-1; $(-)$-trachelanthic acid, 23944-50-5; retronecine, 480-85-3; phenylacetic acid, 103-82-2.

Synthesis and Antidepressant Profiles of Phenyl-Substituted 2-Amino- and 2-[(Alkoxycarbonyl)amino]-1,4,5,6-tetrahydropyrimidines ${ }^{1}$

Klaus Weinhardt,* Marshall B. Wallach, and Michael Marx
Institutes of Organic Chemistry and of Pharmacology and Metabolism, Syntex Research, Palo Alto, California 94304. Received July 23, 1984

Abstract

A series of 4(6)- and 5 -phenyl-substituted 2 -amino- and 2-[(alkoxycarbonyl)amino]-1,4,5,6-tetrahydropyrimidines 2 were prepared and evaluated for central nervous system (CNS) effects in animal models. Several 5-phenyl-substituted compounds possessed potent antidepressant activity and all compounds in this series were devoid of significant activity in any of the other CNS (anticonvulsant, muscle relaxant, and depressant) assays. The most active compound in the in vivo screen for antidepressant activity (reversal of reserpine-induced hypothermia), 2-[(methoxy-carbonyl)aminol- 5 -phenyl-1,4,5,6-tetrahydropyrimidine (16), was considerably more potent than tricyclic antidepressant (TCA) standards. The 2 -amino parent compound 27 on the other hand was >100-fold as effective as TCA's in in vitro inhibition of norepinephrine and dopamine uptake.

During our studies of structure-activity relationships (SAR) in a series of $2-[$ (alkoxycarbonyl)amino]-4(5)-phenyl-2-imidazolines 1^{2} (imidazolines) with central nervous system (CNS) activity we became interested in exploring the effect of enlarging of the imidazole moiety to give the appropriately substituted 2 -amino-1,4,5,6tetrahydropyrimidines 2 (tetrahydropyrimidines). A

number of representative compounds were prepared ${ }^{3}$ and
(1) Contribution No. 680 from the Institute of Organic Chemistry.
(2) Weinhardt, K.; Beard, C. C.; Dvorak, C.; Marx, M.; Patterson, J.; Roszkowski, A.; Schuler, M.; Unger, S. H.; Wagner, P. J.; Wallach, M. B. J. Med. Chem. 1984, 27, 616-627.
evaluated for their CNS activities ${ }^{4}$ according to our previously reported procedures. ${ }^{2}$
Chemistry. Several methods were available for the preparation of cyclic guanidines from diamines and reactants containing the central guanidine $\mathrm{C}-\mathrm{N}$ fragment. Therefore, our synthetic route was based in part on the intermediacy of 1 -phenyl- and 2-phenyl-1,3-diaminopropanes (Scheme I). Cyanogen bromide was known to react with 1,2 -diamines to yield 2 -aminoimidazolines, ${ }^{5}$ but it was not effective for the preparation of six- and seven-
(3) Weinhardt, K.; Marx, M. U.S. Patent 4322 421, 1982.
(4) Peterson, K. E.; Hedley, L. R.; Schuler, M. E.; Wallach, M. B. Fed. Proc., Fed. Am. Soc. Biol. 1982, 41, 1066. Ohnmacht, C. J.; Malick, J. B.: Frazee, W. J. Annu. Rep. Med. Chem. 1983, 18, 42 .
(5) (a) Matier, W. L.; Owens, D. A.; Comer, W. T.; Deitchmam, D.; Ferguson, H. C.; Seidehamel, R. J.; Young, J. R. J. Med. Chem. 1973, 16, 901. (b) Ishikawa, F.; Kosayama, A.; Nakamura, S.; Konno, T. Chem. Pharm. Bull. 1978, 26, 3657. (c) Rodricks, J. V.; Rapoport, H. J. Org. Chem. 1971, 36, 46 and references therein.

Table I. 2-[(Alkoxycarbonyl)amino]- and 2-Amino-1,4,5,6-tetrahydropyrimidines

[^0]membered monocyclic guanidines from the corresponding diamines. ${ }^{5 \mathrm{~b}}$ On the other hand, successful syntheses of fused 2 -amino-1,4,5,6-tetrahydropyrimidines with cyanogen bromide have been reported. ${ }^{6} \mathrm{~N}$-Substituted S, S-dimethylcarbonimidodithioates have been used as reagents for the preparation of six- and seven-membered cyclic guanidines. ${ }^{\text {5b, }, \text {, } 7}$

We found that phenyl-substituted 1,3-diaminopropanes (Table II) do react with cyanogen bromide to form 2 aminotetrahydropyrimidines $2\left(\mathrm{R}_{2}=\mathrm{H}\right)$ (Table I). The reaction of the 2 -phenyl analogues 5 was slower than that of the 1 -phenyl isomers 8 . The symmetrically substituted 2-amino-5-phenyltetrahydropyrimidine 27 was best prepared by fusion of diamine 43 with 2 -methyl-2-thiopseudourea hemisulfate. In addition, cyclization reactions of the phenyl-1,3-diaminopropanes with bis(alkoxycarbonyl) derivatives of 2 -methyl-2-thiopseudourea 15^{8} could be used to form tetrahydropyrimidines $2\left(\mathrm{R}_{2}=\right.$ alkoxycarbonyl) (Table I) in yields comparable to those

[^1]obtained for the formation of imidazolines 1^{2} in a related reaction.

Symmetrical 3-phenylglutaronitriles 3 (Table II) were prepared by the procedure of Schiemenz and Engelhard ${ }^{9}$ and the 2-phenyl analogues 6 (Table II) were prepared according to the method of Bertocchio and Dreux. ${ }^{10}$ Initially, we converted the dinitriles into glutaramides 4 and 7 (Table II) by hydrolysis with sulfuric acid; however, application of these conditions to 3-(3-methoxyphenyl)glutaronitrile (50) gave rise to extensive ring sulfonation. Nitrile hydrolysis with aqueous sodium carbonate and hydrogen peroxide ${ }^{11}$ circumvented this problem and was a generally preferred method due to the improved ease of diamide isolation from the reaction mixture (see Experimental Section). The glutaramides 4 and 7 were converted into phenyl-1,3-diaminopropanes 5 and 8 , respectively, by a double Hofmann rearrangement as described by Aspinall ${ }^{12}$ for glutaramide. Several 1-phenyl-1,3-diaminopropanes 8 were prepared by the diborane reduction of 3-amino-3-phenylacrylonitriles $9 .{ }^{13} \quad N$-Methyl-1,3-di-

[^2]Scheme I

Table II. Intermediates for Tetrahydropyrimidines

Ar	phenyl-1,3-dicyanopropanes 3and 6		(A) 4 and 7 , (B) 9 , or (C) phenylmethylpyrazolines			
	$\begin{gathered} \text { formula, }{ }^{a} \mathrm{bp}, \\ { }^{\circ} \mathrm{C} / \mathrm{mmHg} \text { or } \mathrm{mp},{ }^{\circ} \mathrm{C}^{b} \end{gathered}$	no.	$\begin{gathered} \text { formula, }{ }^{\alpha} \mathrm{mp}, \\ { }^{\circ} \mathrm{C} \text { or } \mathrm{bp},{ }^{\circ} \mathrm{C} / \mathrm{mmHg} \end{gathered}$	no.	formula ${ }^{a}$ (free base), mp, ${ }^{\circ} \mathrm{C}^{l}$	R, no.
2-Ph	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}, 134 / 0.02^{\text {c }}$	41	(A) $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}, 180-184, \mathrm{E}^{d}$	42	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2}, 258-262^{e}$	H, 43
2-(2-ClPh)	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{Cl}, \sim 150 / 0.02$	44	(A) $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}, 189, \mathrm{~B}$	45	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}, 253-257$	H, 46
2 -(3-BrPh)	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{Br}, 94-96, \mathrm{~A}$	47	(A) $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}, 168-170, \mathrm{C}$	48	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Br}, 260-265$	H, 49
$2-\left(3-\mathrm{CH}_{3} \mathrm{OPh}\right)$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}, 146-153 / 0.01$	50	(A) $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}, 161-162, \mathrm{C}$	51	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}, 232-234$	H, 52
$2-\left(4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHPh}\right)$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}, \sim 180 / 0.05^{\mathrm{g}}$	53	(A) $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}, 192-193, \mathrm{~F}^{g}$	54	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}, 284-287$	H,55
2-(4-FPh)	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{~F}, 138-140 / 0.01$	56	(A) $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}, 184-186, \mathrm{~B}$	57	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}, 292.5-295$	H, 58
$2-\left(2,4-\mathrm{Cl}_{2} \mathrm{Ph}\right)$	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Cl}_{2}, 76-78, \mathrm{~A}-\mathrm{C}$	59	(A) $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}, 194-196, \mathrm{C}$	60	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Cl}_{2}, 268-270$	H, 61
$2-\left(2,6-\mathrm{Cl}_{2} \mathrm{Ph}\right)$	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Cl}_{2}, 104-106, \mathrm{C}$	62	(A) $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}, 224-226, \mathrm{~B}$	63	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Cl}_{2},>300 \mathrm{dec}^{h}$	H, 64
$1-\mathrm{Ph}$	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}, 144-153 / 1^{i}$	65	(A) $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}, 155-156, \mathrm{E}$	66	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2}, 244-246$	H, 67
1-(4-FPh)	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{~F}, 118-222 / 0.03^{g}$	68	(A) $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}, 154-157, \mathrm{D}$	69	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}, 262-266^{j}$	H, 70
$1-\left(2-\mathrm{CF}_{3} \mathrm{Ph}\right)$			(B) $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~F}_{3}, 101-103, \mathrm{~A}-\mathrm{F}^{j}$	71	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}_{3}, 214-216$	H, 72
1-(3-CH30Ph)			(B) $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}, 70-73, \mathrm{~B}-\mathrm{F}$	73	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}, 225-227$	H, 74
2-Ph(diamine), 4-Ph-pyrazoline			(C) $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}, 80-90 / 0.01^{\text {g }}$	13	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2}, 265-267$	$\mathrm{CH}_{3}, 14$
1-Ph(diamine), 5-Ph-pyrazoline			(C) $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}, 51-56 / 0.01^{g}$	10	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2}, 247-250^{8}$	$\mathrm{CH}_{3}, 11$

${ }^{a}$ Satisfactory analyses (C, H, and N) for all compounds, except where otherwise noted. ${ }^{b}$ Crystallization solvent code: $\mathrm{A}=\mathrm{MeOH}, \mathrm{B}=$ $\mathrm{EtOH}, \mathrm{C}=i$ - $\mathrm{PrOH}, \mathrm{D}=\mathrm{CHCl}_{3}, \mathrm{E}=$ crude extract, $\mathrm{F}=$ water. ${ }^{\mathrm{c}} \mathrm{Lit}^{9}{ }^{9} \mathrm{bp} 158^{\circ} \mathrm{C}(1 \mathrm{mmHg}) .{ }^{d}$ Lit. ${ }^{9} \mathrm{mp} 183-185{ }^{\circ} \mathrm{C} .{ }^{e}$ Lit. $\mathrm{mp} 249-251{ }^{\circ} \mathrm{C}$. Riemschneider, R.; Rook, A. Monatsh. Chem. 1961, 92, 1227. fN: calcd, 9.82; found, 10.34. ${ }^{8}$ Satisfactory analysis was not obtained. ${ }^{h}$ Picrate mp $253-255{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{i}$ Lit. ${ }^{10} \mathrm{bp} 137-138^{\circ} \mathrm{C}(0.5 \mathrm{mmHg}) .{ }^{j} \mathrm{C}$: calcd, 44.83 ; found, $44.39 .{ }^{k} \mathrm{C}$: calcd, 56.61 ; found, 57.05 . ${ }^{l}$ Dihydrochloride salt.
aminopropanes 11 and 14 were obtained by catalytic hydrogenation of the corresponding N-methyl-2-pyrazolines (Table II). 1-Methyl-5-phenyl-2-pyrazoline (10) ${ }^{14,15}$ and 1-methyl-4-phenyl-2-pyrazoline (13) were prepared by
(14) (a) Auwers, K.; Heimke, P. Justus Liebigs Ann. Chem. 1927, 458, 204. (b) Gibert, J.-P.; Petrus, C.; Petrus, F. J. Heterocycl. Chem. 1479, 16, 311.
(15) The mass spectrum matched that reported for the assigned structure, not that of the isomeric 1-methyl-3-phenylpyrazoline. Jaquier, R.; Ramos, M.-J. Bull. Soc. Chim. Fr. 1973, 5, 737.
addition of methylhydrazine to cinnamaldehyde and atropaldehyde (12), respectively. Because of its instability, atropaldehyde was generated from its ethylene ketal ${ }^{16} \mathrm{im}$ mediately prior to its reaction with methylhydrazine.

A few selected reactions were carried out with tetrahydropyrimidine 16. A reduction of the N-carbamate side chain with lithium aluminum hydride furnished 2 - $(\mathrm{N}$ methylamino)tetrahydropyrimidine 29. Direct methylation of the anion of 16 , prepared with NaH , resulted in the
(16) Elkik, E. Bull. Soc. Chim. Fr. 1968, 1, 283.

Table III. Inhibition of Uptake of Neurogenic Amines

compd	$\begin{gathered} \text { in vivo NE } \\ \text { (mouse heart): } \\ \mathrm{ED}_{50},{ }^{\text {ip }} \end{gathered}$	in vitro $\mathbf{I C}_{50}{ }^{\text {a }}$, $\times 10^{-6}$		
		NE	dopamine	5-HT
16	0.038 (0.01-0.14)	$4.9{ }^{\text {c }}$	24	160
27	0.038 (0.01-0.15)	0.01	$0.03{ }^{\text {d }}$	1.6
amitryptyline	4.4 (2.8-6.9)	2.5	12	12
desipramine	1.4 (0.5-3.5)		12	12
imipramine	6.7 (3.1-14.6)	4.6	12	16

${ }^{a}$ Molar concentration that causes 50% inhibition of norepinephrine, dopamine, and 5 -hydroxytryptamine uptake, respectively, in rat brain slices. ${ }^{b}$ Milligrams/kilogram; 95% confidence limits in parenthesis. ${ }^{c}$ The N-methyl analogue 26 was inactive. ${ }^{d}$ The 4(6)-phenyl analogue 38 measures $\sim 1 / 10$.

formation of mixtures of $26,30,39$, and 40.

Results and Discussion

Our testing of 2 -aminotetrahydropyrimidines and their 2-(alkoxycarbonyl)amino derivatives 2 showed that they possessed pure antidepressant profiles. Compounds 17, $18,23,27$, and especially 16 were much more potent than tricyclic antidepressant (TCA) standards in their ability to reverse reserpine-induced hypothermia (Table I). ${ }^{17}$ In addition, they showed either no anticonvulsant, muscle relaxant, or depressant activity or were active only near lethal doses. By contrast, the class of imidazolines 1 had demonstrated a mixed profile of activities, with only antidepressant potency reaching the level of standards.

Compounds with phenyl groups in the symmetrical 5position of the tetrahydropyrimidine moiety were more active than compounds with a phenyl substituent at position 4 or 6 . Further substitution on the phenyl ring or N -methylation of the guanidine moiety gave less active compounds. This is in contrast to imidazolines 1 , where N -methylation and introduction of halogen into the 2 - and 3 -positions of the phenyl ring had produced some very active compounds. ${ }^{2}$ Increasing the chain length of the 2 -(alkoxycarbonyl)amino beyond methoxy reduced antidepressant activity.

Some of the hypotheses concerning the mechanism of antidepressant activity are based on the ability of drugs to influence the turnover of neurotransmitters. ${ }^{18}$ Many publications have appeared that describe measurements of the inhibition of uptake of $\left[{ }^{3} \mathrm{H}\right]$ norepinephrine (NE), $\left[{ }^{14} \mathrm{C}\right]$ serotonin ($5-\mathrm{HT}$), and $\left[{ }^{3} \mathrm{H}\right]$ dopamine in vivo and in tissue cultures. ${ }^{19}$ We measured in vivo inhibition of uptake of NE and in vitro inhibition of uptake of NE, dopamine, and 5 -HT by our most active compounds (Table III). The 2 -(methoxycarbonyl)amino derivative 16 was of comparable potency to TCA's in in vitro inhibition of NE and dopamine uptake. The parent amine 27 was 100 -fold more active and it was also more active in 5 -HTuptake inhibition. Both compounds were equipotent and significantly more potent than TCA's in in vivo inhibition of NE uptake. It is interesting to note that for the reversal of hypothermia (orally in mice) the 2 -(methoxycarbonyl)amino analogue 16 was far more active than its free 2 -amino analogue 27 , which is the reverse of the in vitro uptake results.
(17) Kaiser, C.; Setler, P. E. "Burgers Medicinal Chemistry"; 4th ed.; Wolff, M. E., Ed., Wiley-Interscience: New York, 1981; Part 3, p 1005.
(18) Reference 17, pp 1002-1004.
(19) For example: (a) Kimelberg, H. K.; Pelton, E. W., II J. Neurochem. 1983, 40, 1265 and references therein. (b) Cooper, B. R.; Hester, T. J.; Maxwell, R. A. J. Pharmacol. Exp. Ther. 1980, 215.

In summary, it is clear that tetrahydropyrimidines 2 differ greatly from the analogous imidazolines 1 in terms of both potency and selectivity for antidepressant properties. The SAR with regard to phenyl substituents and N-methyl substitution is different in both series. In both series the 2 -amino analogues were significantly more active in in vitro assays than their 2-(alkoxycarbonyl)amino counterparts. On the basis of its high in vivo potency and its in vivo activity, compound 16 was chosen for clinical development. Development of the compound was stopped after the discovery of drug-related agranular cytosis in preclinical primate toxicity studies.

Experimental Section

Pharmacology. Test procedures were followed as previously described for imidazolines. ${ }^{2}$

Chemistry. Melting points were determined on a ThomasHoover apparatus and are uncorrected. The structures of all compounds are supported by NMR spectroscopy (Varian A60 for ${ }^{1} \mathrm{H}$ and Bruker WH90 for ${ }^{13} \mathrm{C}$). IR spectra were recorded (Per-kin-Elmer 217B) for all compounds except diaminopropanes and their salts. Mass spectra of selected compounds were obtained at 70 eV with a Finnigan/MAT CH7 spectrometer.

3-Phenylglutaramide (42). A solution of 14.3 g of 3 phenylglutaronitrile ($41 ; 139 \mathrm{mmol}$) in 100 mL of concentrated sulfuric acid and 4 mL of water was allowed to stand at $20^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was poured over ca. 700 g of ice and neutralized with concentrated $\mathrm{NH}_{4} \mathrm{OH}$. Extraction of the resulting solution in a liquid-liquid extractor with CHCl_{3} for 2 days yielded 1.1 g of a solid, $\mathrm{mp} 173-180^{\circ} \mathrm{C}$. After an additional 14 days of extraction, $10 \mathrm{~g}(60 \%)$ of pure product [$\mathrm{mp} \mathrm{180-184}$ ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp}$ 183-184 ${ }^{\circ} \mathrm{C}$)] was obtained. Substituted phenylglutaronitriles $45,48,54,60$, and 63 , prepared by this method, crystallized from their neutralized aqueous solutions and were collected by filtration.
3-(3-Methoxyphenyl)glutaramide (51). A solution of 18.7 $\mathrm{g}(93 \mathrm{mmol})$ of dinitrile 50 in 250 mL of acetone and 125 mL of water was stirred in an ice bath and treated with 40 mL of 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ and 25 mL of 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. After 16 h at $20^{\circ} \mathrm{C}$, the mixture was concentrated to $\sim 100 \mathrm{~mL}$ and then cooled 4 h in an ice bath. The precipitate of fine needles was collected, washed with water, and dried under vacuum at $55^{\circ} \mathrm{C}$, yielding $17.4 \mathrm{~g}(79 \%)$ of pure 51.

1-[2-(Trifluoromethyl)phenyl]-1,3-diaminopropane (72). A solution of $7.6 \mathrm{~g}(35 \mathrm{mmol})$ of the acrylonitrile 71 in 100 mL of ether was treated with 55 mL of a 1 M solution of boranetetrahydrofuran complex and the mixture was allowed to stand at $20^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was treated with 10 mL of water and was then concentrated to a small volume. The residue was dissolved in a mixture of 2-propanol and $15 \% \mathrm{HCl}$, heated at reflux for 2 h , and concentrated again to a small volume. After addition of an excess of $30 \% \mathrm{NaOH}$, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration of the extract and distillation of the residue gave 1.7 g of crude diamine $\mathbf{7 2}$, bp 73-77 ${ }^{\circ} \mathrm{C}(0.1 \mathrm{mmHg})$. The dihydrochloride was prepared by treatment of the distillate with $\mathrm{EtOH}-\mathrm{HCl}$ and ether, yielding $1.3 \mathrm{~g}(17 \%)$, $\mathrm{mp} 213-217^{\circ} \mathrm{C}$. A sample was recrystallized from EtOH: mp $214-216^{\circ} \mathrm{C}$.

2-(3-Methoxyphenyl)-1,3-diaminopropane (52). A solution of 27 g of NaOH (680 mmol) in 200 mL of water was cooled, to $0^{\circ} \mathrm{C}$ and 23 g of $\mathrm{Br}_{2}(145 \mathrm{mmol})$ was added. After the mixture was stirred for a few minutes, 16 g of the diamide 51 (68 mmol) was added in five portions and stirring was continued at $0^{\circ} \mathrm{C}$ until there was a clear solution. The reaction temperature was raised to $20^{\circ} \mathrm{C}$ for 1 h and finally to $70^{\circ} \mathrm{C}$ for 30 min . After cooling to $20^{\circ} \mathrm{C}$, the reaction mixture was shaken with 15 separate $70-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was distilled, affording $5.1 \mathrm{~g}(42 \%)$ of diamine 52, bp $140^{\circ} \mathrm{C}(1 \mathrm{mmHg})$. A few drops of the diamine were dissolved in $\mathrm{EtOH}-\mathrm{HCl}$ and the dihydrochloride was crystallized by the addition of ether.

1-Methyl-4-phenyl-2-pyrazoline (13). A sample of 15.3 g of the ethylene ketal of atropaldehyde 12 (87 mmol) was hydrolyzed in a mixture of 800 mL of EtOH and 150 mL of water containing 0.5 g of oxalic acid dihydrate $(4 \mathrm{mmol})$ at $75^{\circ} \mathrm{C}$. The reaction
was followed by GLC (3% SE-30) and when the ketal had been consumed (45 min), 5 g of methylhydrazine (107 mmol) was added. Solvents were removed on a rotatory evaporator and saturated NaHCO_{3} was added to the residue. The crude product was extracted into ether and the ether was removed under vacuum. The remaining liquid was distilled to give a $10.2-\mathrm{g}$ fraction: bp $80-90^{\circ} \mathrm{C}(0.01 \mathrm{mmHg})$. GLC analysis ($3 \% \mathrm{SE}-30$) showed the distillate to be a mixture of at least seven products with one major product accounting for about 60% (the starting ethylene ketal had been ca. 90% pure). Column chromatography (700 g of silica gel 60; gradient elution with $10-20 \%$ of EtOAc in hexane) afforded $4.4 \mathrm{~g}(32 \%)$ of pure pyrazoline $13:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{8} / \mathrm{Me}_{4} \mathrm{Si}\right) \delta$ 2.8 ($\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$ of CH_{2}), 2.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), $3.5(\mathrm{t}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}$ of CH_{2}), 4.18 (dt, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic CH), 6.78 (d, $J=2.0,1 \mathrm{H}$, vinyl CH), 7.28 ($\mathrm{br} \mathrm{s}, 5 \mathrm{H}$, phenyl protons); ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3} / \mathrm{Me}_{4} \mathrm{Si}\right) 43.40$ (NMe), 53.77 (benzylic C), 63.59 $\left(\mathrm{CH}_{2}\right), 127.37,127.86,128.93$, and 139.69 (phenyl C's), 145.35 (vinyl C).

1-Amino-3-(methylamino)-2-phenylpropane (14). A solution of 3.8 g of 4-phenylpyrazoline $13(23 \mathrm{mmol})$ in 50 mL of AcOH and 10 mL of $10 \% \mathrm{HCl}$ was hydrogenated at atmospheric pressure over 1 g of $5 \% \mathrm{Pt} / \mathrm{C}$. The calculated amount of H_{2} was taken up in 6 h . The catalyst was removed by filtration and the filtrate was concentrated. The residue was treated with $i-\mathrm{PrOH}$ and toluene and concentrated again. The crude product (still containing some AcOH) was dissolved in $i-\mathrm{PrOH}$ and ether was added to precipitate an oil. Digestion of the mixture at reflux for 3 h transformed the oil into a powder. Filtration then gave $2.8 \mathrm{~g}(50 \%)$ of N-methyldiaminopropane 14 as the dihydrochloride, mp $238-247^{\circ} \mathrm{C}$. Recrystallization from $\mathrm{EtOH}-i-\mathrm{PrOH}$ afforded pure product: $m p 265-267^{\circ} \mathrm{C}$.

2-Amino-5-(3-bromophenyl)-1,4,5,6-tetrahydropyrimidine (28). A solution containing 1.55 g of 2 -(3-bromophenyl)-1,3-diaminopropane ($49 ; 6.77 \mathrm{mmol}$) and 0.72 g of cyanogen bromide (6.77 mmol) in 300 mL of MeOH was allowed to stand at $20^{\circ} \mathrm{C}$ for 16 h . TLC (silica gel GF, MeOH) revealed substantial amounts of unreacted starting diamine. The reaction mixture was stored at $20^{\circ} \mathrm{C}$ for 1 week and heated at reflux for 16 h . The solvent was removed under vacuum and the residual oil was dissolved in hot $i-\mathrm{PrOH}$, which resulted in spontaneous crystallization of $0.87 \mathrm{~g}(38 \%)$ of 2 -aminotetrahydropyrimidine 28 . The 4(6)-phenyl analogue 38 was formed in a similar reaction in 40% yield after a reaction time of only 6 h at $20^{\circ} \mathrm{C}$.

2-A mino-5-phenyl-1,4,5,6-tetrahydropyrimidine Hemisulfate (27). A mixture of 3.25 g of 2 -phenyl-1,3-diaminopropane ($43 ; 21.6 \mathrm{mmol}$) and 3.02 g of 2 -methyl-2-thiopseudurea hemisulfate (10.8 mmol) in a $200-\mathrm{mL}$, round-bottom flask was immersed into a $240{ }^{\circ} \mathrm{C}$ hot oil bath. The mixture fumed and solidified. The bath temperature was raised to $265^{\circ} \mathrm{C}$ and the now liquid reaction mixture was stirred for a few minutes. After the mixture cooled, the solid product was digested with 50 mL of refluxing MeOH and was then collected by filtration. Recrystallization from 20 mL of water afforded $2.24 \mathrm{~g}(46 \%)$ of pure product 27 as the hemisulfate.

5-(2,6-Dichlorophenyl)-2-[(methoxycarbonyl)amino]-$1,4,5,6$-tetrahydropyrimidine (24). A solution of 900 mg of diamine $64(4.1 \mathrm{mmol})$ and 885 mg of the reagent $15\left(\mathrm{R}_{2}=\right.$ $\mathrm{CO}_{2} \mathrm{CH}_{3}$) (4.3 mmol) in 125 mL of MeOH was kept at reflux for 1 h . The solution was concentrated to 25 mL and the product that crystallized was collected and dried under vacuum, yielding $830 \mathrm{mg}(67 \%)$ of pure 24 . A sample of 800 mg of 24 was dissolved in 5 mL of EtOH containing ca. 150 mg of HCl . Addition of ether caused crystallization of 660 mg of the hydrochloride of 24.

2-[(Methoxycarbonyl)amino]-1-methyl-5-phenyl-1,4,5,6tetrahydropyrimidine (26). A solution of 1.5 g of the dihydrochloride of the N-methyldiamine 14 (6.33 mmol) in 200 mL of MeOH was stirred with 0.68 g of $\mathrm{MeONa}(12.6 \mathrm{mmol})$ for 10 min and was then combined with a solution of 1.3 g of the reagent $15\left(\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right)(6.31 \mathrm{mmol})$ in 200 mL of MeOH . The mixture was stored at $20^{\circ} \mathrm{C}$ for 16 h and was then heated at reflux for 1 h . The solvent was removed under vacuum and the residue was dissolved in 50 mL of $3 \% \mathrm{HCl}$. This solution was washed with ether and was then neutralized with NaHCO_{3}. The precipitated product was collected by filtration, stirred with fresh water, and collected again. Drying under vacuum yielded $0.99 \mathrm{~g}(63 \%)$ of

26: $\mathrm{mp} 177-179^{\circ} \mathrm{C}$. A small sample was recrystallized from ether: mp $176-177^{\circ} \mathrm{C}$.

2-(Methylamino)-5-phenyl-1,4,5,6-tetrahydropyrimidine (29). A mixture of 430 mg of the 2-(methoxycarbonyl)amino derivative $16(1.9 \mathrm{mmol})$ and 270 mg of lithium aluminum hydride (7.1 mmol) in 50 mL of THF was kept at reflux for 16 h . The mixture was cooled to $20^{\circ} \mathrm{C}$ and stirred with 1 mL of $10 \% \mathrm{NaOH}$ until the precipitate appeared white. The mixture was filtered, and the insoluble materials were washed with 95% THF. The filtrate was concentrated and the residue was dissolved in 10 mL of EtOH containing 150 mg of HCl . The solvent was removed under reduced pressure and crystallization of the residue was induced by treatment with a refluxing mixture of $\mathrm{MeCN}-\mathrm{Et}_{2} \mathrm{O}$, affording 310 mg (74%) of the product 29 as the hydrochloride.

Methylation of the Anion of 16. A slurry of 1.2 g of 16 (5.15 mmol) in 60 mL of THF was stirred at $20^{\circ} \mathrm{C}$ for 30 min and 250 mg of ca. $50 \% \mathrm{NaH}$ in mineral oil (5.2 mmol) was then added. Stirring was continued for 1 h after the H_{2} evolution had ceased. A solution 780 mg of $\mathrm{CH}_{3} \mathrm{I}(5.5 \mathrm{mmol})$ in a few milliliters of THF was added over a period of 2 h and stirring at $20^{\circ} \mathrm{C}$ was continued for 16 h . Water (1 mL) was then added to the reaction mixture, which was a clear solution at this point. A TLC analysis (silica gel GF; $8 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) revealed the presence of two new products, unreacted starting material, and polar materials. The three mobile components were separated by column chromatography (150 g of silica gel 60 ; gradient elution with $3-10 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), which afforded $320 \mathrm{mg}(25 \%)$ of $26,380 \mathrm{mg}$ (32%) of starting material 16 , and $100 \mathrm{mg}(7 \%)$ of 39 . When the reaction was repeated with 2 equiv each of NaH and $\mathrm{CH}_{3} \mathrm{I}, 77 \%$ of 39 and 12% of 30 were isolated. Compound 39 in this case was obtained as a glassy material that seemed to contain polar impurities. Hydrolysis of 39 took place during purification attempts by recrystallization ($\mathrm{MeCN}, i-\mathrm{PrOH}$) and we obtained the hydroiodide of 40 instead.

Acknowledgment. We thank Linda Hedley, Karen Peterson, Dr. Michael Maddox, Lilia Kurz, Janis Nelson, John W. Smith, and Linda Jacobson for technical assistance and Dr. Arthur Kluge and Denis Kertesz for helpful discussions.

Registry No. $8\left(\mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{Ph}\right), 95724-96-2 ; 10(\mathrm{Ar}=\mathrm{Ph})$, 53657-63-9; $11(\mathrm{Ar}=\mathrm{Ph}), 95724-79-1 ; 11(\mathrm{Ar}=\mathrm{Ph}) \cdot 2 \mathrm{HCl}$, 95724-80-4; $13(\mathrm{Ar}=\mathrm{Ph}), 95724-74-6 ; 14(\mathrm{Ar}=\mathrm{Ph}), 95724-78-0$; $14(\mathrm{Ar}=\mathrm{Ph}) \cdot 2 \mathrm{HCl}, 78534-06-2 ; 15\left(\mathrm{R}_{2}=\mathrm{H}\right) \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4}, 867-44-7$; $15\left(\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 34840-23-8 ; 15\left(\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 34840-26-1$; $15\left(\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 58306-41-5 ; 16,78533-56-9 ; 16 \cdot \mathrm{HCl}$, 95724-81-5; 17, 78533-62-7; 17. HCl, 95724-82-6; 18, 78533-65-0; $18 \cdot \mathrm{HCl}, 95724-83-7$; 19, 78533-66-1; $19 \cdot \mathrm{HCl}, 95724-84-8$; 20, $78533-58-1 ; 20 \cdot \mathrm{HCl}, 95739-51-8 ; 21,78533-69-4 ; 21 \cdot \mathrm{HCl}, 95724-85-9$; 22, 78533-71-8; 22.HCl, 95724-86-0; 23, 78533-70-7; 23. HCl , 78534-23-3; 24, 78533-54-7; 24. HCl, 95724-87-1; 25, 78533-59-2; $\mathbf{2 5} \cdot \mathrm{HCl}, 78534-24-4 ; 26,78533-67-2 ; 27,78533-68-3 ; 27 \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$, $78534-19-7 ; 28,78533-57-0 ; 28 \cdot \mathrm{HBr}, 78534-18-6$; 29, 95724-75-7; $29 . \mathrm{HCl}, 95724-88-2$; 30, $95724-97-3$; 30.HI, $95724-89-3$; 31, $78533-55-8 ; 31 \cdot \mathrm{HCl}, 95724-90-6 ; 32,78533-60-5$; 32•HCl, 95724-91-7; 33 , $78533-63-8$; $33 \cdot \mathrm{HCl}, 95739-52-9$; 34, $78533-64-9 ; 34 \cdot \mathrm{HCl}$, 95724-92-8; 35, 78534-28-8; 36, 78533-52-5; 36. $\mathrm{HCl}, 78534-27-7$; $37,95724-93-9 ; 38,78533-53-6 ; 38 \cdot \mathrm{HBr}, 78534-25-5 ; 39,95724-94-0$; 40, 95739-53-0; 40.HI, 95724-95-1; 41, 78533-73-0; 42, 78533-83-2; 43, $55165-09-8 ; 43 \cdot 2 \mathrm{HCl}, 78533-94-5 ; 44,78533-74-1 ; 45,78533-84-3$; 46, $78533-95-6 ; 46 \cdot 2 \mathrm{HCl}, 78533-96-7 ; 47,78533-76-3 ; 48,78533-86-5$; $49,78533-98-9 ; 42 \cdot 2 \mathrm{HCl}, 78533-99-0 ; 50,78533-78-5 ; 51,78533-88-7$; 52, 78533-92-3; $52 \cdot 2 \mathrm{HCl}, 78533-93-4 ; 53,78533-81-0 ; 54,78533-91-2$; $55,78534-04-0 ; 55 \cdot 2 \mathrm{HCl}, 78534-05-1 ; 56,78533-75-2 ; 57,78533-85-4$; $58,95724-76-8 ; 58 \cdot 2 \mathrm{HCl}, 78533-97-8 ; 59,78533-77-4 ; 60,78533-87-6 ;$ 61, 78534-00-6; $61 \cdot 2 \mathrm{HCl}, 78534-01-7 ; 62,78533-72-9 ; 63,78533-82-1$; 64, 78534-02-8; 64-picrate, 95724-77-9; 65, 91137-66-5; 66, $74298-71-8 ; 67,4888-74-8 ; 67 \cdot 2 \mathrm{HCl}, 78534-09-5 ; 68,78534-07-3 ;$ $69,78534-08-4 ; 70,78534-14-2 ; 70 \cdot 2 \mathrm{HCl}, 78534-15-3 ; 71,78534-10-8$; 72, 78534-12-0; 72-2HCl, 78534-13-1; 73, 78534-11-9; 74, 78534-16-4; $74 \cdot 2 \mathrm{HCl}, 78534-17-5 ; \mathrm{PhCH}=\mathrm{CHCHO}, 104-55-2 ; \mathrm{CH}_{3} \mathrm{NHNH}_{2}$, 60-34-4; atropaldehyde, 4432-63-7; atropaldehyde ethylene ketal, 16486-91-2.

[^0]: ${ }^{a}$ Satisfactory analyses (C, H, and $\mathrm{N} ; \pm 0.4 \%$ of the theoretical values) for all compounds, except where otherwise noted. ${ }^{b}$ Antagonism of reserpine-induced hypothermia. Minimum oral dose (milligrams $/ \mathrm{kilogram}$) producing a significant reversal. I = inactive at $10 \mathrm{mg} / \mathrm{kg}$, (10) $=$ weak activity at $10 \mathrm{mg} / \mathrm{kg}, 10=$ at least 40% reversal at $10 \mathrm{mg} / \mathrm{kg}$ but steep drop off. ${ }^{c}$ Apparent phase changes at $210-230^{\circ} \mathrm{C}$. ${ }^{d} \mathrm{LD} \mathrm{D}_{50}$ mice, po $142(111-182)$, ip $27(25-28) \mathrm{mg} / \mathrm{kg} .{ }^{e} \mathrm{LD}_{50}$ mice, po $>1000 \mathrm{mg} / \mathrm{kg} .{ }^{f} \mathrm{LD}_{50}$ mice, po $\sim 700 \mathrm{mg} / \mathrm{kg}$ (estimated from mouse behavior screen). ${ }^{g}$ An analysis was not obtained. ${ }^{h}$ Hemisulfate salt. ${ }^{i} \mathrm{LD}_{50}$ mice, po $78(50-122)$, ip $42(31-53) \mathrm{mg} / \mathrm{kg}$. ${ }^{j} \mathrm{HBr}$ salt; C : calcd, 35.85 ; found, 34.79. ${ }^{k} \mathrm{HI}$ salt. ${ }^{l}$ Short acting. ${ }^{m} \mathrm{C}$: calcd, 64.35 ; found, $63.82 .{ }^{n} \mathrm{HBr}$ salt. ${ }^{\circ}$ Not tested at a lower dose.

[^1]: (6) (a) Armagero, W. L. F.; Tucker, P. G. Aust. J. Chem. 1979, 32, 1805. (b) Kienzle, F.; Kaiser, A.; Chodnekar, M. S. Eur. J. Med. Chem.-Chim. Ther. 1982, 17, 547.
 (7) Hougten, R. A.; Simpson, R. A.; Hanson, R. N.; Rapoport, H. J. Org. Chem. 1979, 44, 4536.
 (8) Klopping, H. L. U.S. Patent 2933504, 1960; Chem. Abstr. 1961, 55, 9431f.

[^2]: (9) Schiemenz, G. P.; Engelhard, H. Chem. Ber. 1962, 95, 195.
 (10) Bertocchio, R.; Dreux, J. Bull. Soc. Chim. Fr. 1962, 1809.
 (11) Murray, J. V.; Cloke, J. B. J. Am. Chem. Soc. 1934, 56, 2749.
 (12) Aspinall, S. R. J. Am. Chem. Soc. 1941, 63, 2843.
 (13) Dornow, A.; Kuehlcke, I.; Baxmann, F. Chem. Ber. 1949, 82, 254.

